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Abstract. This paper addresses itself to a portfolio optimization problem under nonconvex trans-
action costs and minimal transaction unit constraints. Associated with portfolio construction is a
fee for purchasing assets. Unit transaction fee is larger when the amount of transaction is smaller.
Hence the transaction cost is usually a concave function up to certain point. When the amount
of transaction increases, the unit price of assets increases due to illiquidity/market impact effects.
Hence the transaction cost becomes convex beyond certain bound. Therefore, the net expected return
becomes a general d.c. function (difference of two convex functions). We will propose a branch-and-
bound algorithm for the resulting d.c. maximization problem subject to a constraint on the level of
risk measured in terms of the absolute deviation of the rate of return of a portfolio. Also, we will show
that the minimal transaction unit constraints can be incorporated without excessively increasing the
amount of computation.
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1. Introduction

In a recent series of papers [8, 9], authors proposed practical algorithms for solv-
ing portfolio optimization problems under concave transaction costs and minimal
transaction unit constraints.

Associated with purchasing an asset is a transaction fee. The unit fee is larger
when the amount of transaction is smaller and it decreases as the amount increases.
Therefore, the transaction fee can be represented as a piecewise linear increas-
ing concave function, so that maximization of the net return becomes a convex
maximization problem.

A traditional and well known approach to these problems is the use of integer
programming methods by introducing a number of 0–1 variables to approximate
the convex cost function. However, computation time often explodes as the number
of assets increases [5]. In fact, it is very difficult to solve this problem if the number
of assets is more than, say 50. As a result, exact treatment of transaction costs has
long been set aside and standard mean variance model or its variations [2, 11] were
used to construct a portfolio. Among few exceptions are the works by Perold [14]
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and Mulvey [12], in which a convex approximation of nonconvex cost function is
employed.

Fortunately, however a remarkable progress in global (nonconvex) optimization
in the last decade enabled one to solve a class of nonconvex minimization problems
in an efficient manner (see [6, 16] for recent progress in this area). In particular,
branch-and-bound methods based on the idea of Falk and Soland [3] turned out to
be an efficient method for minimizing a concave objective function under linear
constraints [4, 5, 15]. Encouraged by these new developments, the authors pro-
posed a branch-and-bound algorithm and succeeded in solving a practical portfolio
optimization problem with concave transaction costs [8]. The keys to the success
of this approach are the use of:
(i) a mean-absolute deviation model for formulating the portfolio optimization

model,
(ii) an elaborate problem reduction technique,
(iii) an ω-subdivision strategy for partitioning the feasible region.
Later in [9], we extended this approach to a more difficult problem with minimal
transaction unit constraints on each asset, usually 1000 stocks in the Tokyo Stock
Exchange. The problem can again be formulated as a linear programming problem
with integer variables which require a huge amount of computation time. However,
the problem reduction worked extremely well for this problem. In fact, computa-
tional results reported in [9] show that we can obtain a close to optimal portfolio
where the assets with fractional units are very few.

In this paper, we will extend these results to a more difficult problem with mar-
ket illiquidity effects. If there is not enough supply to meet the demand, the unit
price will increase. Also, if an investor purchases a significant amount of assets,
the unit price will increase. This is called ‘illiquidity’ or ‘market impact’ effect.
Therefore the transaction cost becomes convex when the amount exceeds some
point. As a result, the total transaction cost is concave (due to transaction fee) when
the amount is smaller but it becomes convex (due to illiquidity/market impact)
beyond certain point. The problem thus becomes a d.c. optimization problem.

In the next section, we will briefly discuss the mean-absolute deviation model
and the structure of cost function. Section 3 will be devoted to the description of
branch-and-bound algorithm. In Section 4, we will present the results of numerical
simulation using market data. Finally, in Section 5, we will state the future direction
of research.

2. Mean-absolute deviation model under transaction costs

In 1991, one of the authors proposed a mean-absolute deviation (MAD) port-
folio model [7] to formulate a very large scale portfolio optimization problem.
This serves as an alternative to the standard mean-variance (MV) model, where
variance of the rate of return of a portfolio is adopted as the measure of risk.
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As demonstrated by Ogryczak and Ruszczynski [13], the absolute deviation is an
authentic measure of risk in view of its compatibility with von Neumann’s principle
of ‘expected utility maximization’. Also, since the model can be casted into a linear
programming problem, it can be solved much faster than mean-variance models.
Also, linear programming formulation has computational advantages over quad-
ratic programming formulation when we treat integer constraints and nonconvex
cost function to be discussed below.

Let Rj be the rate of return of j th asset (j = 1, · · · , n) and let x=(x1, · · · , xn)
be a portfolio, a vector of proportion of investments into each asset. Let X be an
investable set, i.e, a set of feasible portfolios. We will assume for simplicity that X
is a set defined below:

X = {x = (x1, · · · , xn) |
n∑

j=1

xj = 1, 0 � xj � αj , j = 1, · · · , n}. (1)

The rate of return R(x) of the portfolio x is given by

R(x) =
n∑

j=1

Rjxj . (2)

Let rj be the expected value of Rj . The absolute deviation W(x) of the rate of
return R(x) of the portfolio x is given by

W(x) = E[ |R(x)− E[R(x)] | ] . (3)

Let us assume that R = (R1, · · · , Rn) is distributed over a finite set of points
{(r1t , · · · , rnt ), t = 1, · · · , T } and that the probability of occurrence of (r1t , · · · , xnt )
is given by pt, t = 1, · · · , T . Then

rj =
T∑

t=1

ptrjt

and

W(x) =
T∑

t=1

pt |
n∑

j=1

(rjt − rj )xj | . (4)

The mean-absolute deviation (MAD) portfolio optimization model is defined as
follows :

∣∣∣∣∣∣∣∣∣∣∣∣

minimize W(x) ≡
T∑

t=1

pt |
n∑

j=1

(rjt − rj )xj |

subject to
n∑

j=1

rjxj = ρ,

x ∈ X,

(5)
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where ρ is a given constant representing the expected rate of return of the portfolio.
The MAD model can be formulated in an alternative way :

∣∣∣∣∣∣∣∣∣∣∣∣

maximize
n∑

j=1

rjxj

subject to
T∑

t=1

pt |
n∑

j=1

(rjt − rj )xj | � w,

x ∈ X,

(6)

where w is a given constant representing the tolerable level of risk. Both (5) and
(6) can be used interchangeably to generate an efficient frontier.

Let us now consider transaction cost c(x) associated with purchasing a portfolio
x, which consists of two components :

(i) transaction fee,
(ii) illiquidity/market impact cost.

Transaction fee is usually determined by transaction fee table provided by each
agent. When the amount of purchase is small, the unit transaction cost is larger
and it decreases as the amount increases. Therefore, the transaction fee cj (xj )
associated with purchasing xj units of j th asset is an increasing piecewise linear
concave function.

When xj reaches some bound, ‘illiquidity’ cost may be incurred. Since the
purchase is associated with a sale of some other investors, the unit purchasing price
will increase if there is not sufficient sale. Therefore, the expected rate of return rj
of the j th asset becomes a function of xj . Therefore, the total rate of return r(x) of
the portfolio x can be represented as follows :

r(x) =
n∑

j=1

{
rjxj − cj (xj )

}
, (7)

where cj (xj ) is a d.c. function described in Figure 1.

Another difficulty associated with the practical portfolio optimization is the
existence of minimal transaction unit constraints, usually 1000 stocks in the Tokyo
Stock Exchange. Therefore xj has to satisfy a constraint xj ∈Uj ≡ {0, xj1,· · · ,xjn}
where xjn is the largest investable unit below the given upper bound αj . This
constraint is negligible if the total amount of investment is large, since rounding
to the nearest feasible point will have only a small effect on the overall structure
of the portfolio. However, a rounding procedure can have a significant effect if the
amount of fund is relatively small.
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Figure 1. D.C. transaction cost function

3. Branch-and-bound algorithm

3.1. PROBLEM REFORMULATION

The discussion of the previous section leads to the following d.c. optimization
problem :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize f (x) ≡
n∑

j=1

{
rjxj − cj (xj )

}

subject to
T∑

t=1

pt |
n∑

j=1

(rjt − rj )xj | � w,

n∑

j=1

xj = 1,

xj ∈ Uj j = 1, · · · , n.

(8)

By standard results in linear programming [1, 8] the problem (8) can be converted
to a linear system of inequalities as follows :

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize f (x) ≡
n∑

j=1

{
rjxj − cj (xj )

}

subject to
T∑

t=1

yt � w/2,

yt � pt

n∑

j=1

(rjt − rj )xj , yt � 0, t = 1, · · · , T ,
n∑

j=1

xj = 1, xj ∈ Uj, j = 1, · · · , n.

(9)



142 H. KONNO AND A. WIJAYANAYAKE

THEOREM 1. Problem (8) is equivalent to (9).

Proof : The proof can be found in [8]. However, we will present it for complete-
ness. Let us introduce a pair of non-negative variables yt , zt , t = 1, · · · , T and
represent

yt − zt = pt

n∑

j=1

(rjt − rj )xj , t = 1, · · · , T ,
yt zt = 0, yt � 0, zt � 0, t = 1, · · · , T .

Then the problem (8) is equivalent to
∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize f (x) ≡
n∑

j=1

{
rj xj − cj (xj )

}

subject to
T∑

t=1

(yt + zt ) � w,

yt − zt = pt

n∑

j=1

(rjt − rj )xj , t = 1, · · · , T ,
yt zt = 0, yt � 0, zt � 0, t = 1, · · · , T ,
n∑

j=1

xj = 1, xj ∈ Uj, j = 1, · · · , n.

(10)

Let (x∗
1 , · · · , x∗

n, y
∗
1 , · · · , y∗

T , z
∗
1, · · · , z∗

T ) be an optimal solution of the problem
(10) without complementarity constraints. Let us define

ŷt = max(y∗
t − z∗

t , 0), ẑt = − min(0, y∗
t − z∗

t ), t = 1, · · · , T .
Then (x∗

1 , · · · , x∗
n, ŷ1, · · · , ŷT ẑ1, · · · , ẑT ) is also an optimal solution of (10) satis-

fying the condition ŷ
t
ẑ
t
= 0, t = 1, · · · , T . This means that the complementarity

conditions y
t
z
t

= 0, t = 1, · · · , T can be removed from (10). By noting the
relation

T∑

t=1

(yt − zt ) =
T∑

t=1

pt

n∑

j=1

(rjt − rj )xj =
T∑

t=1

n∑

j=1

pt(rjt − rj )xj = 0,

the relation
T∑

t=1

(yt + zt ) � w

is equivalent to

T∑

t=1

yt � w/2.
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Figure 2. Underestimation of the concave cost function.

Also, the second constraint of (10) can be represented as

yt �
n∑

j=1

pt(rjt − rj )xj , t = 1, · · · , T ,

by noting the condition zt � 0. This completes the proof of equivalence. �

Let

F = {(x, y)|
T∑

t=1

yt � w/2,
n∑

j=1

xj = 1, yt − pt

n∑

j=1

(rjt − rj )xj � 0,

yt � 0, t = 1, · · · , T }.
(11)

Then the problem (10) can be denoted as follows :

(P0)

∣∣∣∣∣∣∣∣∣

maximize f (x) =
n∑

j=1

{
rjxj − cj (xj )

}

subject to (x, y) ∈ F,
xj ∈ Uj, j = 1, · · · , n,

(12)

where the cost function cj (xj ) is a d.c. function depicted in Figure 1.
Let us decompose cj (xj ) into the sum of two components cj1(xj ), cj2(xj ),

where cj1(·) is a concave function and cj2(·) is a convex function (see Figure 2).
The function cj1(xj ) is the maximal concave extension of the concave part,

which means that cj1(xj ) is linear between uj and αj with its slope at point Aj .
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The problem (12) is thus represented as follows.

(P0)

∣∣∣∣∣∣∣∣∣

maximize f (x) =
n∑

j=1

{
rj xj − cj1(xj )− cj2(xj )

}

subject to (x, y) ∈ F,
xj ∈ Uj , j = 1, · · · , n.

(13)

3.2. RELAXATIONS OF THE PROBLEM

First let us relax the conditions xj ∈ Uj, j = 1, · · · , n and consider the following
linearly constrained problem :

(Q0)

∣∣∣∣∣∣∣∣∣

maximize f (x) =
n∑

j=1

{
rj xj − cj1(xj )− cj2(xj )

}

subject to (x, y) ∈ F,
0 � xj � αj , j = 1, · · · , n.

(14)

Second, let us replace the concave function cj1(xj ) by its convex envelope, i.e., a
linear underestimating function δjxj connecting 0 and Bj (See Figure 2). Let

gj (xj ) = rjxj − δj xj − cj2(xj ), j = 1, · · · , n, (15)

and consider the following relaxation of Q0 :

(Q̄0)

∣∣∣∣∣∣∣∣∣

maximize g(x) ≡
n∑

j=1

gj (xj )

subject to (x, y) ∈ F,
0 � xj � αj , j = 1, · · · , n.

(16)

This is a linearly constrained concave maximization problem which can be solved
by standard methods.

Let (x0, y0) be an optimal solution of Q̄0. Also, let (x∗, y∗) be an optimal
solution of Q0.

THEOREM 2. The following relation holds :

g(x0) � f (x∗) � f (x0). (17)

Proof. By definition, g(x) � f (x) for all feasible (x, y). Therefore

max{g(x) | (x, y) ∈ F, 0 � x � α}
� max{f (x) | (x, y) ∈ F, 0 � x � α} � f (x0).
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Figure 3. Subdividing the cost function

since (x0, y0) is feasible for Q0. �

Case 1: g(x0) − f (x0) � ε for some small enough ε > 0. In this case, x0 is an
approximate optimal solution of Q0.
Case 2: g(x0)− f (x0) > ε

Let

x0
s = argmax{ cj1(x

0
j )− δj x

0
j | j = 1, · · · , n }

Here we apply the ω-subdivision scheme [6], in which the region [0, αs] is
divided into two subintervals [0, x0

s ] and [x0
s , αs] where x0

s is the component of
the optimal solution of x0 of ¯(Q0) which has the largest difference between the
nonlinear transaction costs and underestimating linear transaction costs as shown
in Figure 3.

Let us define two subproblems :

(Q1)

∣∣∣∣∣∣∣∣

maximize f (x)

subject to (x, y) ∈ F,
0 � xj � αj , j �= s

0 � xs � x0
s .

(Q2)

∣∣∣∣∣∣∣∣

maximize f (x)

subject to (x, y) ∈ F,
0 � xj � αj , j �= s

x0
s � xs � αs.

We are now ready to propose a branch-and-bound algorithm for solving Q0.
(See [6, 16] for more detailed explanation of the basic concepts of branch-and-
bound algorithm.)
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Algorithm 1 (Branch-and-Bound Algorithm)

(1) Q = {Q0}, f̂ = −∞, k = 0.

β0 = 0; α0 = α; X0 = {x | β0 � x � α0}
Solve Q̄0 and let (x0, y0) be its optimal solution.

(2) If Q = {φ}, then go to (9); Otherwise go to (3).
(3) Choose a problem Qk ∈ Q: where g(xk, yk) = max{g(xl, yl) | Ql ∈ Q}

where (xl, yl) is an optimal solution of Q̄l . Q = Q\{Qk}.

(Qk)

∣∣∣∣∣∣∣∣∣∣∣

maximize f (x) =
n∑

j=1

{
rj xj − cj1(xj )− cj2(xj )

}

subject to (x, y) ∈ F,
βk � x � αk.

(4) Let ckj1(xj ) be a linear underestimating function of cj1(xj ) over the interval
βkj � xj � αkj , (j = 1, · · · , n). Define the following nonlinear problem.

¯(Qk)

∣∣∣∣∣∣∣∣∣∣∣

maximize gk(x) =
n∑

j=1

{
rj xj − ckj1(xj )− cj2(xj )

}

subject to (x, y) ∈ F,
βk � x � αk.

If Q̄k is infeasible then go to (2). Otherwise let xk be an optimal solution of
Q̄k .
If |gk(xk)− f (xk)| > ε then go to (8). Otherwise let fk = f (xk).

(5) If fk < f̂ then go to (7); Otherwise go to (6).
(6) Let x̂ = x̂

k and eliminate all the subproblems Qt for which gt (xt ) � f̂ .

(7) If gk(xk) � f̂ then go to (2). Otherwise go to (8).
(8) Let cs1(xks )− cks1(x

k
s ) = max { cj1(x

k
j )− ckj1(x

k
j ) | j = 1, · · · , n },

Sl+1 = Sk ∩ {x |βks � xs � xks },
Sl+2 = Sk ∩ {x | xks � xs � αks },

and define two subproblems :

(Ql+1) maximize {f (x)| (x, y) ∈ F, x ∈ Sl+1},

(Ql+2) maximize {f (x)| (x, y) ∈ F, x ∈ Sl+2}.
Q = Q ∪ {Ql+1,Ql+2}, k = k + 1 and go to 3◦.
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(9) Stop : x̂ is an ε optimal solution of Q0.

THEOREM 3. The algorithm provides an ε-optimal solution of Q0 in finitely
many steps.

Proof. See Theorem 5.5 of Tuy [16]. �
In case αlj ’s are located below inflection point, then Q̄l is a linear programming

problem. Since the set F consists of T + 2 linear inequality constraints, those
components xj such that βlj < xj < αlj at an optimal solution is at most T + 2,
usually less than T /2 [8, 9]. Also, those variables at lower or upper bound are not
subject to approximation error (note that the linear underestimating functions pass
these points). This means that the upper bound generated by this procedure is a
reasonably good approximation of the optimal solution.

3.3. PROBLEM REDUCTION AND MINIMAL TRANSACTION UNIT CONSTRAINTS

The problem Q0 can, in principle, be solved by Algorithm 1. However, computa-
tion time is expected to increase rapidly as the number of assets increases. Further
our eventual goal is to solve an even more difficult problem P0 with minimal
transaction unit (MTU) constraints.

To cope with these difficulties, we will use the following heuristic procedures
which worked remarkably well when the cost function is concave [8, 9].

3.3.1. (a) Elimination of Variables

The first such procedure is problem reduction by eliminating all variables xj such
that x0

j = 0. Let us assume without loss of generality that the first J (� T + 2)
components of x0 are positive and define the reduced problem as follows:

(Q′
0)

∣∣∣∣∣∣∣∣∣

maximize f̃ (x) =
J∑

j=1

{rjxj − cj1(xj )− cj2(xj )}
subject to (x1, · · · , xJ , 0, · · · , 0, y) ∈ F,

0 � xj � αj , j = 1, · · · , J.
(18)

Since the unit transaction cost is larger when xj is smaller, those variables with
zero investment in the optimal solution of Q̄0 is expected to remain zero throughout
the branch-and-bound procedure. Numerical experiments reported in [9] show that
this observation is usually true. In fact, only a few variables xj such that x0

j = 0
takes positive value in the true optimal solution.

To solve the problem (P0) with minimal transaction unit constraints, we may
even remove those variables xj such that x0

j is less than minimal transaction unit
xj1. This will further reduce the number of variables in the subsequent branch and
bound procedure.
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Figure 4. Subdivision strategy.

3.3.2. (b) Alternative subdivision strategy

The second such procedure is to replace the subdivision strategy as follows (See
Figure 4). Let xs be a subdivision variable in Pk. Then we will subdivide the interval
[βks , αks ] into subintervals [βks , xksl] and [xksl+1, α

k
s ], where xksl is the largest point of

Us to the left of x̂ks and xksl+1 is the smallest point of Us to the right of x̂ks . This will
push many variables to take integral value in the optimal solution of the resulting
subproblems.

4. Computational Experiments

We conducted numerical tests of Algorithm 1 using monthly data of 200 stocks
chosen from Nikkei 225 Index. The program was coded by C++ and was tested on
Pentium Pro 500 MHz with 256 MB memory. We choose ε = 10−3 and 10−5 in
our computation. We tested the algorithm for three different levels of investment,
namely 15×109 yen, 25×109 yen, and 3×1010 yen using the transaction cost table
of a leading security company of Japan. According to this table, the transaction cost
is specified up to 1 billion yen, where the transaction cost function is a well-defined
concave function. We assumed that the cost function is convex beyond this point.
Also, we assumed that this part of the cost function is quadratic (see Figure 5). We
may use an alternative functional form such as a piecewise linear convex function.

4.1. COMPUTATIONAL RESULTS OF PORTFOLIO CONSTRUCTION PROBLEM

Figure 6 shows the computation time for solving the problem Q0 by Algorithm 1
for different number of assets without using problem reduction strategy. We solved
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Figure 5. Transaction cost function.

Figure 6. CPU time for solving Q0 for different n.

ten test problems corresponding to different sets of data and plotted the average
computation time and its standard deviation.

In general, the computation time increases exponentially as n increase. But we
see from this figure that the average and the variance of the computation time
increases less rapidly. This is primarily due to the fact that the starting solution
generated by Q̄0 is a good feasible solution of Q0, so that many subproblems are
fathomed by bounds.

Figure 7 shows the computation time when the problem reduction strategy is
employed. We see that the average computation time is less than 10% of Algorithm
1 without problem reduction. Also, the relative difference of the objective function
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Figure 7. CPU Time with Problem Reduction

Figure 8. CPU time for solving Q0 for different T

value of the algorithm with and without problem reduction is at most 1%, usually
much less (less than 0.3%). We conclude from this that problem reduction is a very
effective strategy for solving problems with large n. The average computation time
increases less mildly as n increases (see Figure 6).

Figures 8 and 9 show the computation time as a function of T , when the number
of data is n = 200. We see that the increase of the average computation time is very
mild. We can safely conclude that the problem up to T = 60 can be solved in less
than a few minutes. Let us note that the maximal size of T is usually less than 60
in practical applications.

Figures 10 and 11 show the efficient frontiers for different amount of invest-
ments and different level of upper bounds. It is clear that when investment increases
and/or the upper bounds increases, the maximal net expected return tends to de-
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Figure 9. CPU time for different T with problem reduction.

Figure 10. Efficient frontiers for different investments.

crease because the unit price of the assets increases when the amount of transaction
increases, due to illiquidity/market impact effects.

Also we tested our algorithm for different levels of ε when n = 200, and T =
36. When ε is 10−3 and 10−5, the average computation time is 32.3 and 91.3 s,
respectively. The objective values are also more or less the same (see Figure 12).
Therefore, the quality of the solution is not very sensitive to the level of ε.

4.2. PORTFOLIO CONSTRUCTION PROBLEM WITH MTU CONSTRAINTS

We conducted similar experiments for the problem with minimal transaction
unit (MTU) constraints. There is no guarantee that a solution exists where all
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Figure 11. Efficient frontiers for different level of upper bounds.

Figure 12. Efficient frontiers for different levels of ε.

the assets in the optimal solution satisfy MTU constraints since the amount of
total investment is fixed. Therefore, we terminated computation as soon as the
error becomes less than ε and rounded the solution to the nearest solution satis-
fying MTU constraints. Table 1 shows the statistics of the computation time for
n = 200, T = 36, αj = 0.05 and 0.1 and for different levels of investments,
where the problem reduction strategy was employed. We see that the number of
assets which do not satisfy MTU constraints in the solution is at most 8. The
necessary amount of fund adjustment needed to round all the assets to the nearest
solution satisfying MTU constraints is less than 0.01% of the specified amount of
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Table 1. Statistics for Different level of α and M

αj ’s w M ρ # of CPU No. of No. of Fund

values billion branc- time assets assets adjustment

(yen) hing (s) violating in the

MTU portfolio

const-

raints

0.05 1.8 30 1.08347 10 30 6 23 0.00214

2.3 30 1.66373 10 29 5 22 0.002806

1.8 25 1.11403 12 36 5 23 0.0062

2 25 1.42034 14 41 7 22 0.000424

2.6 25 1.89402 6 18 4 22 -4.72E-03

0.1 1.8 30 1.11027 18 50 6 13 -0.00215

2.3 30 1.69506 6 16 6 12 -0.000806

1.8 15 1.32266 22 65 6 15 0.0097066

2.1 15 1.70371 14 41 6 12 -0.006793

2.6 15 2.1002 6 16 3 12 0.0037

investment M = 15 × 109, and it decreases to 0.003% when M = 3 × 1010, which
is almost negligible from a practical point of view.

5. Conclusions and future research

We showed in this paper that the portfolio construction problem under d.c. transac-
tion costs can be solved in a practical amount of time. The success depends upon
the use of mean absolute deviation model, elaboration of the classical branch-and-
bound method using ω-subdivision strategy and the problem reduction strategy
using the special structure of the problem.

Let us emphasize that there are still a number of difficult (nonconvex) minimiza-
tion problems and d.c. maximization problems in the field of financial optimization,
some of which may be solved successfully by applying algorithms developed in the
various fields of mathematical programming. We are now extending the branch-
and-bound method proposed in this paper to index tracking problems with concave
transaction costs and minimal transaction unit constraints, the results of which will
be reported subsequently.
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